viernes, 9 de enero de 2015

Teorema de Euclides

De Euclides (330 a.C al 227 a.C) se sabe muy poco, con certeza, acerca de sus vida. Su gran reputación se debe sin duda a su obra titulada Los Elementos Geométricos, conocida simplemente por Los Elementos.
Además de estas y otras obras, Euclides escribió Los Datos que trata de la resolución de problemas, dándose elementos de la figura y determinándose otros. Los Porismos es una de sus obras perdidas; se cree que trataba de los Lugares Geométricos y de proposiciones sobre transversales. Muchos piensan que esta ha sido la mejor obra de Euclides.
A continuación se presentan dos Teoremas de Euclides, uno referido a un cateto (en un triángulo rectángulo) y otro referido a la altura.

Teorema de Euclides referido a un cateto

“En un triángulo rectángulo la medida de cada cateto es media proporcional geométrica entre las medidas de la hipotenusa y su proyección sobre ella.”
Demostración:
Si se tiene un triángulo ABC cualquiera, rectángulo en C, y se proyectan los catetos sobre la hipotenusa, se tiene la siguiente figura (dercha):
 x
donde
DB = p (proyección del cateto a (CB) sobre la hipotenusa)
AD = q (proyección del cateto b (AC) sobre la hipotenusa)
c = p + q

Por semejanza (~) de triángulos, el   ΔACB ~  ΔCDB (son semejantes)
x
Luego;
Euclidea_teoremas_001
Que es lo mismo que:
Euclides_teoremas_002
 De forma análoga se tiene queΔACB  ~  ΔADC (a la derecha) ,
entonces
Euclides_teoremas_003
Que es lo mismo que:

No hay comentarios:

Publicar un comentario